SEMIPARAMETRIC EFFICIENCY IN GMM MODELS WITH AUXILIARY DATA By Xiaohong Chen,1 Han Hong2 and Alessandro Tarozzi
نویسندگان
چکیده
We study semiparametric efficiency bounds and efficient estimation of parameters defined through general moment restrictions with missing data. Identification relies on auxiliary data containing information about the distribution of the missing variables conditional on proxy variables that are observed in both the primary and the auxiliary database, when such distribution is common to the two data sets. The auxiliary sample can be independent of the primary sample, or can be a subset of it. For both cases, we derive bounds when the probability of missing data given the proxy variables is unknown, or known, or belongs to a correctly specified parametric family. We find that the conditional probability is not ancillary when the two samples are independent. For all cases, we discuss efficient semiparametric estimators. An estimator based on a conditional expectation projection is shown to require milder regularity conditions than one based on inverse probability weighting.
منابع مشابه
Semiparametric Efficiency in Gmm Models with Auxiliary Data By
We study semiparametric efficiency bounds and efficient estimation of parameters defined through general moment restrictions with missing data. Identification relies on auxiliary data containing information about the distribution of the missing variables conditional on proxy variables that are observed in both the primary and the auxiliary database, when such distribution is common to the two d...
متن کاملSemiparametric Efficiency in GMM Models with Auxiliary Data
We study semiparametric efficiency bounds and efficient estimation of parameters defined through general moment restrictions with missing data. Identification relies on auxiliary data containing information about the distribution of the missing variables conditional on proxy variables that are observed in both the primary and the auxiliary database, when such distribution is common to the two d...
متن کاملEfficient Estimation of Semiparametric Conditional Moment Models with Possibly Nonsmooth Residuals By
This paper considers semiparametric efficient estimation of conditional moment models with possibly nonsmooth residuals in unknown parametric components (θ ) and unknown functions (h) of endogenous variables. We show that: (1) the penalized sieve minimum distance (PSMD) estimator (θ̂ , ĥ) can simultaneously achieve root-n asymptotic normality of θ̂ and nonparametric optimal convergence rate of ĥ,...
متن کاملAdaptive Elastic Net GMM Estimator with Many Invalid Moment Conditions: A Simultaneous Model and Moment Selection
This paper develops an adaptive elastic-net GMM estimator with many possibly invalid moment conditions. We allow for the number of structural parameters (p0) as well as the number of moment conditions increasing with the sample size (n). The new estimator conducts simultaneous model and moment selection. We estimate the structural parameters along with parameters associated with the invalid mom...
متن کامل